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Previous reports of “bond-stretch” isomerism in mononuclear 5.0
transition metal complexes have been critically reexandided
because of misinterpretation of structural or compositional
disorder; however, the viability of this type of isomerism in
spin-crossover systems has recently been discissgond- M, (dimen),[TFPB],
stretch isomerism in compounds with metatetal bonds has
also been proposed: in addition to the evidence that two bond-
stretch isomers of the @molecule exist in the gas-phate,
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related type of isomerism (“deformational isomeristiias been
reported for [Cp*RuGCl], (Cp* = 5>-CsMes)® and [Rh(u-Cl),-
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M, (dimen),[B(C(H,),],
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(CNCgHg)4(u-AuP(CsHs)3] 2(PFs)2.6  Deformational isomerism 34
occurs when two or more molecular forms differ only in-i1
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distance and a coupled ligand deformation coordiniage, &n 3.0 - — . L
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L—M-—L angle and/or an EM—M-—L dihedral angle). o0 0
A wide range of M-M distances (2.725.28 A) and I-M— Dihedral Twist Angle (0)/°

M—L dihedral twist angles¢ = 0—39°) has been observed Figure 1. Selected M-M distances and average-® —M—C dihedral
for binuclear dimen (1,8-diisocyanomenthane) compléXes. twist angles from [M(L)4](Y)2 crystal structures. The first three pairs
of bars are for [M(dimen}](Y)2; the fourth pair of bars is for [I4

& (TM4)4)(Y) 2. [Rhy(dimen)](PFs), data are from ref 8; [MTM4)4](Y)2
\N\’—- data are from refs 13b and 14.
N
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distances for the jtdimen)?* salts are shorter than those for
the corresponding Rtdimen)?" salts!® Interestingly, the Rh-
(1) (d(Rhp) = 3.262}4and Ir(l) d(Irp) = 3.119 A¥3°complexes
Pertinent structural data from five X-ray crystal structies ~ ©f TM4 (TM4 = 2,5-diisocyano-2,5-dimethylhexane) show a
the [Mg(dimen)](Y) series (M= Rh, Ir; Y = PFs, TFPB (TFPB  Similar trend.

= tetrakis[3,5-bis(trifluoromethyl)phenyl]boratgland B(G-
Hs)4)%19-12 are illustrated in Figure 1. In each case, theM

(10) (a) [Rh(dimen)](TFPB), and [Ir(dimen)](TFPB): Hill, M. G. Ph.D.
Dissertation, University of Minnesota, 1992. (b){imen)y][B-
(CgHs)al2: Smith, T. P. Ph.D. Dissertation, California Institute of
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113 1437. (b) Desrochers, P. J.; Nebesny, K. W.; LaBarre, M. J.; of [Rhy(dimen)](PFe)2. [Rhz(dimen)][B(CsHs)4]2 was prepared in an
Lincoln, S. E.; Loehr, T. M.; Enemark, J. H. Am. Chem. Sod991, analogous manner. Crystals suitable for X-ray crystallography were
113 9193. (c) Song, J.; Hall, M. Bnorg. Chem1991 30, 4433. (d) obtained by slow diffusion of diethyl ether into concentratedsCN
Parkin, G.Chem. Re. 1993 93, 887. solutions.

(2) Additional references are supplied in Supporting Information. (11) The X-ray data were collected on Enraf-Nonius SDP-CAD-4 diffrac-

(3) Gutlich, P.; Goodwin, H. A.; Hendrickson, D. Mngew. Chem., Int. tometers with graphite monochromated Ma. Kadiation ¢ = 0.710 69
Ed. Engl.1994 33, 425. A). Data for the PE~ and TFPB salts were collected in thekl octant.
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references cited therein. (b) Moskovits, M.; Limm, W.; MejeanJT. hkl octants. All structures (except M Rh, Y = B(CgHs)4) were solved
Chem. Phys1985 82, 4875. by direct methods using PHASE, DIRDIF, and TEXSAN software.

(5) Kolle, U.; Kossakowski, J.; Klaff, N.; Wesemann, L.; Englert, U.; The structure of [Ri{dimen)][B(CeHs)4]2 was solved from a Patterson
Heberich, G. EAngew. Chem., Int. Ed. Engl991, 30, 690. map using the CRYM software system. Full-matrix least-squares

(6) Bray, K. L.; Drickamer, H. G.; Mingos, D. M. P.; Watson, M. J.; refinements were carried out with reflections for whick 2 o(l).
Shapley, J. Rlnorg. Chem.1991, 30, 864. (12) Crystal data for [M(dimen)}](Y)2 (M = Rh, Y = TFPB; M= Rh, Y

(7) (a) Harvey, P. D.; Murtaza, Znorg. Chem1993 32, 4721. (b) Sykes, =B(CeHs)s; M =1Ir, Y =PRs; M =1Ir, Y =TFPB; M=1r, Y =
A. G.; Mann, K. R.J. Am. Chem. Sod988 110, 8252. (c) Sykes, A. B(CsHs)4) are included in the supporting material.

G.; Mann, K. R.J. Am. Chem. S0d.99Q 112, 7247. (13) From Raman studies of #TM4),2*, ground-state MM force

(8) The X-ray structure of [Rifdimen)](PFs). has been previously constants were determined to be 0.092MRh)!32and 0.159 mdyn
reported: Mann, K. RCryst. Struct. Commuri.981, 20, 1921. A-1(M = Ir).13(a) Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.;
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Table 1. Solid-State Absorption and Corrected Fluorescence major distortion coordinate’$:(1) pure metal-metal stretching,
Maxima (nm) for [My(dimen)](Y). with a minimum at 3.+3.3 A (based on the MTM4).2t
M Y absorptiort emissiod structuresy314(2) ligand flexing (minimum at(M—M) ~ 5.2
Ir PE 168 650 A); (3) out-of-plane bendingd) (primarily composed ob(trans
6 .
Ir TEPB 534 666 C—-M~C) andd(N—C—M) modes of local & symmetry with
Ir B(CeHs)a 580 710 an energy minimum at°Orelative to square-planar geometry);
Ir CH,Cl, solr? 470, 580 712 (4) a twisting motion {) that rotates one square plane with
Rh Pk 420 550 respect to the other from a minimum at Qeclipsed NC
Rh TFPB 428 562 groups)l’ We suggest that an important intersection of these
Rh B(GHs)a 437 587 distortion coordinates occurs@iM—M) ~ 3.9 A, between the

Rh 2-MeTHF:CHCN soln 423 600 M—M distances of the eclipsed §{dimen)](TFPB), and

2 See Supporting Information for{dimen)?* sample preparation.  twisted [Ri(dimen)[B(C¢sHs)4]2 Structures. M-M distances
®The My(dimen)?" spectra are solvent and anion independent. greater than 3.9 A are accommodated by trade-offs between
ligand flexing and “@,” out-of-plane bending that maintains the
eclipsed conformation. MM distances shorter than 3.9 A are
(a) produced by relaxing the out-of-plane bending of the square
planes through the torsional deformatiom)(to a twisted
conformation.

We considered the possibility that the solid-state structures
of the cations are “snapshots” along a flat multidimensional
energy surface with no well defined minima; if this were the
: : f : — case, our structures would be another example of thgiBu
Dunitz structure correlation principl€. Although Ri(dimen)2*

(b) can be described in this wa,its iridium analogue cannot:
solutions of Ig(dimen)2" showtwo absorption maxima (480
(e 6000) and 575 nme(7300 M1 cm™1)) attributable tol(do*
— po) excitation. The relative intensities of these bands depend
on temperature, with the band at higher energy losing intensity
to the band at lower energy as the temperature is decrédsed.
— ; — = # Moreover, resonance Raman spe®tshow bands due to two
different v(Ir—Ir) stretches, whose intensities depend on the
(¢) excitation wavelength: the lower-frequency stretch is enhanced
with excitation into the higher-enerdydo* — po) band, while
the higher-frequency stretch is enhanced with excitation into
the lower-energy(de* — po) system. Thus the spectroscopic
and structural evidence, taken together, confirms that the ground-
state potential energy surface of(tfimen)?" possesses at least
350 400 450 500 550 600 650 700 750 two relatively deep minima. It also would appear that the
Wavelength/nm solution structures of theJ{short) and Is (long) deformational

isomers are very similar to those found in the crystalline
Figure 2. Solid-state UV~vis absorption spectra of fidimen)](Y)2: B(CeHs)a~ and Pl)f;/‘ salts y

(@) Y =PHK; (b) Y = TFPB; (c) Y = B(CgHs)a.

Absorbance
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