Structures of $[M_2(dimen)_4](Y)_2$ (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane; Y = PF₆, Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, B(C₆H₅)₄) Crystals Featuring an Exceptionally Wide Range of Metal-Metal Distances and Dihedral Twist Angles

Christopher L. Exstrom, Doyle Britton, and Kent R. Mann*

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Michael G. Hill,[†] Vincent M. Miskowski, William P. Schaefer, and Harry B. Gray*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

William M. Lamanna

Science Research Laboratory, 3M Central Research Laboratories, St. Paul, Minnesota 55144

Received July 7, 1995

Previous reports of "bond-stretch" isomerism in mononuclear transition metal complexes have been critically reexamined^{1,2} because of misinterpretation of structural or compositional disorder; however, the viability of this type of isomerism in spin-crossover systems has recently been discussed.³ Bond-stretch isomerism in compounds with metal-metal bonds has also been proposed: in addition to the evidence that two bond-stretch isomerism ("deformational isomerism")⁵ has been reported for [Cp*RuCl₂]₂ (Cp* = η^{5} -C₅Me₅)⁵ and [Rh₂(μ -Cl)₂-(CNC₈H₉)₄(μ -AuP(C₆H₅)₃]₂(PF₆)₂.⁶ Deformational isomerism occurs when two or more molecular forms differ only in M–M distance and a coupled ligand deformation coordinate (*i.e.*, an L–M–L angle and/or an L–M–L dihedral angle).

A wide range of M–M distances (2.72–5.28 Å) and L–M– M–L dihedral twist angles ($\omega = 0-39^{\circ}$) has been observed for binuclear dimen (1,8-diisocyanomenthane) complexes.^{2,7}

dimen (1,8-diisocyanomenthane)

Pertinent structural data from five X-ray crystal structures⁸ in the $[M_2(dimen)_4](Y)_2$ series (M = Rh, Ir; Y = PF₆, TFPB (TFPB = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate),⁹ and B(C₆-H₅)₄)^{2,10-12} are illustrated in Figure 1. In each case, the M–M

- [†] Present address: Occidental College, Los Angeles, California 90041.
- (a) Yoon, K.; Parkin, G.; Rheingold, A. L. J. Am. Chem. Soc. 1991, 113, 1437.
 (b) Desrochers, P. J.; Nebesny, K. W.; LaBarre, M. J.; Lincoln, S. E.; Loehr, T. M.; Enemark, J. H. J. Am. Chem. Soc. 1991, 113, 9193.
 (c) Song, J.; Hall, M. B. Inorg. Chem. 1991, 30, 4433.
 (d) Parkin, G. Chem. Rev. 1993, 93, 887.
- (2) Additional references are supplied in Supporting Information.
- (3) Gutlich, P.; Goodwin, H. A.; Hendrickson, D. N. Angew. Chem., Int. Ed. Engl. 1994, 33, 425.
- (4) (a) Casey, S. M.; Leopold, D. G. J. Phys. Chem. 1993, 97, 816 and references cited therein. (b) Moskovits, M.; Limm, W.; Mejean, T. J. Chem. Phys. 1985, 82, 4875.
- (5) Kolle, U.; Kossakowski, J.; Klaff, N.; Wesemann, L.; Englert, U.; Heberich, G. E. Angew. Chem., Int. Ed. Engl. 1991, 30, 690.
- (6) Bray, K. L.; Drickamer, H. G.; Mingos, D. M. P.; Watson, M. J.; Shapley, J. R. *Inorg. Chem.* **1991**, *30*, 864.
- (7) (a) Harvey, P. D.; Murtaza, Z. Inorg. Chem. 1993, 32, 4721. (b) Sykes,
 A. G.; Mann, K. R. J. Am. Chem. Soc. 1988, 110, 8252. (c) Sykes, A.
 G.; Mann, K. R. J. Am. Chem. Soc. 1990, 112, 7247.
- (8) The X-ray structure of [Rh₂(dimen)₄](PF₆)₂ has been previously reported: Mann, K. R. Cryst. Struct. Commun. 1981, 20, 1921.
- (9) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. Bull. Chem. Soc. Jpn. 1984, 57, 2600.

Figure 1. Selected M–M distances and average C–M–M–C dihedral twist angles from $[M_2(L)_4](Y)_2$ crystal structures. The first three pairs of bars are for $[M_2(dimen)_4](Y)_2$; the fourth pair of bars is for $[M_2-(TM4)_4](Y)_2$. [Rh₂(dimen)₄](PF₆)₂ data are from ref 8; $[M_2(TM4)_4](Y)_2$ data are from refs 13b and 14.

distances for the $Ir_2(dimen)_4^{2+}$ salts are shorter than those for the corresponding $Rh_2(dimen)_4^{2+}$ salts.¹³ Interestingly, the Rh-(I) $(d(Rh_2) = 3.262)^{14}$ and Ir(I) $(d(Ir_2) = 3.119 \text{ Å})^{13b}$ complexes of TM4 (TM4 = 2,5-diisocyano-2,5-dimethylhexane) show a similar trend.

- (10) (a) [Rh₂(dimen)₄](TFPB)₂ and [Ir(dimen)₄](TFPB)₂: Hill, M. G. Ph.D. Dissertation, University of Minnesota, 1992. (b) [Ir₂(dimen)₄][B-(C₆H₅)₄]₂: Smith, T. P. Ph.D. Dissertation, California Institute of Technology, 1982. (c) [Ir₂(dimen)₄](PF₆)₂: Sykes, A. G. Ph.D. Dissertation, University of Minnesota, 1990. See ref 7c for preparation of [Rh₂(dimen)₄](PF₆)₂. [Rh₂(dimen)₄][B(C₆H₅)₄]₂ was prepared in an analogous manner. Crystals suitable for X-ray crystallography were obtained by slow diffusion of diethyl ether into concentrated CH₃CN solutions.
- (11) The X-ray data were collected on Enraf-Nonius SDP-CAD-4 diffractometers with graphite monochromated Mo K α radiation ($\lambda = 0.710$ 69 Å). Data for the Pf₆⁻ and TFPB⁻ salts were collected in the *hkl* octant. Data for the B(C₆H₅)₄⁻ salts were collected in the *hkl*, *hkl*, *hkl*, and *hkl* octants. All structures (except M = Rh, Y = B(C₆H₅)₄) were solved by direct methods using PHASE, DIRDIF, and TEXSAN software. The structure of [Rh₂(dimen)₄][B(C₆H₅)₄]² was solved from a Patterson map using the CRYM software system. Full-matrix least-squares refinements were carried out with reflections for which $I \geq 2 \sigma(I)$.
- (12) Crystal data for $[M_2(dimen)_4](Y)_2$ (M = Rh, Y = TFPB; M = Rh, Y = $B(C_6H_5)_4$; M = Ir, Y = PF₆; M = Ir, Y = TFPB; M = Ir, Y = $B(C_6H_5)_4$) are included in the supporting material.
- (13) From Raman studies of M₂(TM4)₄²⁺, ground-state M–M force constants were determined to be 0.092 (M = Rh)^{13a} and 0.159 mdyn Å⁻¹ (M = Ir).^{13b} (a) Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H. *J. Am. Chem. Soc.* **1981**, *103*, 1595. (b) Smith, D. C.; Ph.D. Dissertation, California Institute of Technology, 1989.

0020-1669/96/1335-0549\$12.00/0 © 1996 American Chemical Society

Table 1. Solid-State Absorption and Corrected Fluorescence Maxima (nm) for $[M_2(dimen)_4](Y)_2$

М	Y	absorption ^a	emission ^a
Ir	PF ₆	468	650
Ir	TFPB	534	666
Ir	$B(C_6H_5)_4$	580	710
Ir	$CH_2Cl_2 \operatorname{soln}^b$	470, 580	712
Rh	PF_6	420	550
Rh	TFPB	428	562
Rh	$B(C_6H_5)_4$	437	587
Rh	2-MeTHF:CH ₃ CN soln	423	600

^a See Supporting	Information	for $Ir_2(dimen)_4^{2+}$	sample preparation.
^b The M ₂ (dimen) ₄ ²⁺	spectra are	solvent and anion	independent.

Figure 2. Solid-state UV-vis absorption spectra of $[Ir_2(dimen)_4](Y)_2$: (a) Y = PF₆; (b) Y = TFPB; (c) Y = B(C₆H₅)₄.

Structures of dimen complexes with M–M distances between 3.946 (Ir, TFPB⁻) and 4.48 Å (Rh, PF₆⁻) have twist angles of 0°, but the two B(C₆H₅)₄⁻ salts have shorter $d(M_2)$ and significant twist angles, $\omega = 16.2$ (Rh) and 17.2° (Ir). These observations accord with the large (39°) twist angle found for [Ir₂(dimen)₄(P(C₆H₅)₃)(AuP(C₆H₅)₃)](PF₆)₃, with $d(Ir_2) = 2.986$ Å.^{7c}

As the M–M distance decreases in d^8-d^8 complexes, the ${}^{1}(d\sigma^* \rightarrow p\sigma)$ absorption band red shifts.^{2,13–15} This shift is more pronounced in Ir₂(dimen)₄²⁺ than in the corresponding Rh₂-(dimen)₄²⁺ complexes (Table 1, Figure 2).¹³ Fluorescence maxima for the eclipsed [Ir₂(dimen)₄](Y)₂ (Y = PF₆, TFPB) salts are only 370 cm⁻¹ apart, but the Stokes shifts for the two compounds are very different (5940 and 3740 cm⁻¹, respectively). Interestingly, the emission data suggest that the structure of the excited singlet state of Ir₂(dimen)₄²⁺ in CH₂Cl₂ solution ($\lambda_{em} \sim 712$ nm) is similar to that of crystalline [Ir₂(dimen)₄]-[B(C₆H₅)₄]₂ ($\lambda_{em} \sim 710$ nm; ground-state twist angle = 17°).

The ground-state potential energy surface that controls the net M-M interaction is determined by a combination of *four*

major distortion coordinates:¹⁶ (1) pure metal-metal stretching, with a minimum at 3.1–3.3 Å (based on the $M_2(TM4)_4^{2+1}$ structures);^{13b,14} (2) ligand flexing (minimum at $d(M-M) \approx 5.2$ Å); (3) out-of-plane bending (θ) (primarily composed of δ (*trans*-C-M-C) and δ (N-C-M) modes of local a_{2u} symmetry with an energy minimum at 0° relative to square-planar geometry); (4) a twisting motion (ω) that rotates one square plane with respect to the other from a minimum at 0° (eclipsed NC groups).¹⁷ We suggest that an important intersection of these distortion coordinates occurs at $d(M-M) \approx 3.9$ Å, between the M-M distances of the eclipsed [Ir2(dimen)4](TFPB)2 and twisted [Rh₂(dimen)₄[B(C₆H₅)₄]₂ structures. M-M distances greater than 3.9 Å are accommodated by trade-offs between ligand flexing and " a_{2u} " out-of-plane bending that maintains the eclipsed conformation. M-M distances shorter than 3.9 Å are produced by relaxing the out-of-plane bending of the square planes through the torsional deformation (ω) to a twisted conformation.

We considered the possibility that the solid-state structures of the cations are "snapshots" along a flat multidimensional energy surface with no well defined minima; if this were the case, our structures would be another example of the Bürgi– Dunitz structure correlation principle.¹⁸ Although $Rh_2(dimen)_4^{2+}$ can be described in this way,¹⁶ its iridium analogue cannot: solutions of $Ir_2(dimen)_4^{2+}$ show *two* absorption maxima (480) (ϵ 6000) and 575 nm (ϵ 7300 M⁻¹ cm⁻¹)) attributable to ¹(d σ * \rightarrow p σ) excitation. The relative intensities of these bands depend on temperature, with the band at higher energy losing intensity to the band at lower energy as the temperature is decreased.¹⁹ Moreover, resonance Raman spectra²⁰ show bands due to two different $\nu(Ir-Ir)$ stretches, whose intensities depend on the excitation wavelength: the lower-frequency stretch is enhanced with excitation into the higher-energy ${}^{1}(d\sigma^* \rightarrow p\sigma)$ band, while the higher-frequency stretch is enhanced with excitation into the lower-energy ${}^{1}(d\sigma^* \rightarrow p\sigma)$ system. Thus the spectroscopic and structural evidence, taken together, confirms that the groundstate potential energy surface of Ir₂(dimen)₄²⁺ possesses at least two relatively deep minima. It also would appear that the solution structures of the Ir₂ (short) and Ir₂ (long) deformational isomers are very similar to those found in the crystalline $B(C_6H_5)_4^-$ and PF_6^- salts.

Acknowledgment. Work at the University of Minnesota and the California Institute of Technology was supported by the National Science Foundation. We thank Johnson Matthey for generous loans of rhodium trichloride and iridium trichloride.

Supporting Information Available: Text giving crystal data, experimental procedures for solid state spectroscopic measurements, and a discussion of the treatment of ligand disorder, atomic numbering diagrams and ORTEP drawings of the cations in $[Rh_2(dimen)_4](TFPB)_2$ and $[Ir_2(dimen)_4](TFPB)_2$, tables of X-ray crystallographic data, positional parameters, bond distances and angles, and thermal parameters for $[Rh_2(dimen)_4](Y)_2$ (Y = TFPB, B(C₆H₅)₄) and $[Ir_2(dimen)_4]^{2+}$ cations from $[Ir_2(dimen)_4](PF_6)_2$ and $[Ir_2(dimen)_4][B(C_6H_5)_4]_2$ (193 pages). Ordering information is given on any current masthead page.

IC9508637

- (16) Miskowski, V. M.; Rice, S. F.; Gray, H. B.; Dallinger, R. F.; Milder, S. J.; Hill, M. G.; Exstrom, C. L.; Mann, K. R. *Inorg. Chem.* **1994**, *33*, 2799.
- (17) The "a_{2u}" twisting coordinate minimum is based on M–M distances from the reported M₂(TM4)₄²⁺ crystal structures.^{13b,14} (see Figure 1). MM2 calculations show that twisting dimen to $\omega = 17^{\circ}$ at d(M–M) = 3.6 Å gives $\Delta E = 5$ kcal/mol.
- (18) See, for example: Ferretti, V.; Dubler-Steudle, K. C.; Bürgi, H.-B. Chapter 17 In Accurate Molecular Structures; Domenicano, A., Hargittai, I., Eds.; Oxford University Press: Oxford, England, 1992. Bürgi, H.-B.; Dunitz, J. D. Acc. Chem. Res. **1983**, *16*, 153.
- (19) We have analyzed the temperature dependence of these spectra: assuming Ir₂ (long) \Rightarrow Ir₂ (short), we calculate $\Delta H^{\circ} = -0.8$ kcal/mol and $\Delta S^{\circ} = 1.44$ cal/(mol K).
- (20) Villahermosa, R.; Hill, M. G.; Miskowski, V. M. Unpublished results.

⁽¹⁴⁾ Mann, K. R.; Thich, J. A.; Bell, R. A.; Coyle, C. L.; Gray, H. B. Inorg. Chem. 1980, 19, 2462.

^{(15) (}a) Rice, S. F.; Miskowski, V. M.; Gray, H. B. *Inorg. Chem.* **1988**, 27, 4704. (b) Smith, D. C.; Miskowski, V. M.; Mason, W. R.; Gray, H. B. *J. Am. Chem. Soc.* **1990**, *112*, 3759. (c) Miskowski, V. M.; Rice, S. F.; Gray, H. B.; Milder, S. J. J. Phys. Chem. **1993**, *97*, 4277.